Warm-up activity

Here is a formula: $d=\frac{m}{v}$
a) Work out the value of d when $m=18$ and $v=3$
b) Rearrange the formula to make m the subject.
c) Work out the value of m when $d=5$ and $v=10$
d) Rearrange the formula to make v the subject.
e) Work out the value of v when $m=28$ and $d=4$

Beta Exercise

a) A $\mathbf{2} \mathbf{~ c m ~} \mathbf{x} \mathbf{5 c m} \mathbf{x} \mathbf{6} \mathbf{~ c m}$ cuboid weighs $\mathbf{3 0}$ grams. What is the density of the cuboid?
b) Silver has a density of $\mathbf{1 0 . 5} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$. How much does $\mathbf{5} \mathbf{~ c m}^{\mathbf{3}}$ of Silver has a der
silver weigh?
c) What is the volume of an object that weighs $\mathbf{4 0} \mathbf{g}$ and has a density of $\mathbf{4} \mathbf{g} / \mathbf{c m}^{\mathbf{3}}$.

Alpha Exercise

a) A block with a volume of $\mathbf{8} \mathbf{c m}^{\mathbf{3}}$ weighs $\mathbf{8 0} \mathbf{~ g}$. What is the density of this block in $\mathrm{g} / \mathrm{cm}^{3}$?
b) A $\mathbf{1 ~ c m ~} \mathbf{~} \mathbf{2} \mathbf{~ c m ~} \mathbf{x 1 0} \mathbf{~ c m ~ c u b o i d ~ w e i g h s ~} \mathbf{8 0}$ grams. What is the density of the cuboid?
c) A gym ball with a volume of $\mathbf{8 0 0} \mathbf{c m}^{\mathbf{3}}$ has a mass of 1600 g . What is the density of the ball?

Gamma Exercise

a) A cube of side $\mathbf{2} \mathbf{~ c m}$ has a mass of $\mathbf{7 2}$ grams. What is the density of the cube?
b) Platinum has a density of $\mathbf{2 1 . 4} \mathbf{g} / \mathbf{c m}^{\mathbf{3}}$. How much does $\mathbf{1} \mathbf{m}^{\mathbf{3}}$ of platinum weigh?
c) What is the volume of an object that weighs $\mathbf{4 5 0} \mathbf{g}$ and has a density of $\mathbf{7 . 5} \mathbf{~ g / c m}{ }^{\mathbf{3}}$?
d) A ball with a volume of $\mathbf{9 0 0} \mathbf{~ c m}^{\mathbf{3}}$ has a mass of 225 g . What is the density of the ball? Will this ball float on water? (Water has a density of $1 \mathrm{~g} / \mathrm{cm}^{3}$.)

Explain the mistake

Denise answers this question as follows:
Iridium has a density of $22.56 \mathrm{~g} / \mathrm{cm}^{3}$. How much does $1 \mathrm{~m}^{3}$ of gold weigh? Give your answer in kg .

Each cm^{3} of iridium weighs 22.56 g .
So $100 \mathrm{~cm}^{3}$ weighs $22.56 \times 100=2256 \mathrm{~g}$.
Therefore $1 \mathrm{~m}^{3}$ of iridium weighs 2256 g or 2.256 kg .
Denise has made a mistake. What is it?

Exam-style question

Wu has made a bronze sculpture.
The sculpture weighs 384.5 kg .
The density of the bronze used is $7.8 \mathrm{~g} / \mathrm{cm}^{3}$.
What is the volume of the sculpture, correct
to the nearest cm^{3} ?

Challenge

A scientist has a measuring jug with a capacity of $800 \mathrm{~cm}^{3}$. The measuring jug weighs 90 g when empty.

The scientist adds $200 \mathrm{~cm}^{3}$ of liquid A and $600 \mathrm{~cm}^{3}$ of liquid B to the jug, so the jug is now full and has a mass of 850 g .

The mass of $200 \mathrm{~cm}^{3}$ of liquid A is equal to the mass of $350 \mathrm{~cm}^{3}$ of liquid B .
What is the density of liquid A?

