A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Warm-up activity
Solve the following equations:
1)

$$
\begin{aligned}
w+1 & =3 w-17 \\
1 & =2 w-17 \\
18 & =2 w \\
9 & =w
\end{aligned}
$$

2)

$$
\begin{aligned}
11-2 x & =16+x \\
11 & =16+3 x \\
-5 & =3 x \\
\frac{-5}{3} & =x
\end{aligned}
$$

3)

$$
\begin{aligned}
4 y & =7 y-9 \\
0 & =3 y-9 \\
9 & =3 y \\
3 & =y
\end{aligned}
$$

4)

$$
\begin{aligned}
7 k-2 & =13 k+3 \\
-5 & =6 k \\
\frac{-5}{6} & =k
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths
a
Alpha Exercise
Solve the following equations:
1)

$$
\begin{aligned}
& 4 a+3=\frac{2 a}{7} \\
& 28 a+21=2 a \\
& 26 a=-21 \\
& a=\frac{-21}{26}
\end{aligned}
$$

2)

$$
\begin{aligned}
& 8 n-13=\frac{n}{6} \\
& 48 n-78=n \\
& 47 n=78 \\
& n=\frac{78}{47}
\end{aligned}
$$

3) $\frac{5 x}{11}=-x+3$

$$
\begin{aligned}
5 x & =-11 x+33 \\
16 x & =33 \\
x & =\frac{33}{16}
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths
a
Alpha Exercise (contd.)
Solve the following equations:
4) $\frac{3}{2} u-5=-\frac{1}{2} u$

$$
\begin{aligned}
3 u-10 & =-u \\
4 u & =10 \\
u & =\frac{10}{4}
\end{aligned}
$$

$$
u=\frac{5}{2}
$$

5) $\frac{8 v}{5}=\frac{-4 v}{5}+6$

$$
\begin{array}{rlr}
8 v & =-4 v+30 & v=\frac{5}{2} \\
12 v & =30 &
\end{array}
$$

6) $\frac{-4(y+5)}{7}=\frac{12 y}{7}$

$$
\begin{aligned}
-4(y+5) & =12 y \\
-4 y-20 & =12 y \\
-20 & =16 y \\
\frac{-20}{16} & =y
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths
a
Alpha Exercise (contd.)
Solve the following equations:
7)

$$
\begin{aligned}
\frac{-2(p-5)}{4} & =\frac{p}{4} \\
-2(p-5) & =p \\
-2 p+10 & =p \\
10 & =3 p
\end{aligned}
$$

8)

$$
\begin{aligned}
4 x-11=\frac{13 x}{6} & \\
24 x-66 & =13 x \\
11 x & =66 \\
x & =6
\end{aligned}
$$

9) $\frac{4(t-2)+1}{12}=\frac{5}{12} t$

$$
\begin{aligned}
4(t-2)+1 & =5 t \\
4 t-8+1 & =5 t \\
4 t-7 & =5 t \\
-7 & =t
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation \odot BossMaths

Solve the following equations:

1) $\frac{2}{3} x+4=\frac{1}{6} x$

$$
\begin{aligned}
6\left(\frac{2}{3} x+4\right) & =6\left(\frac{1}{6} x\right) \\
4 x+24 & =x \\
3 x & =-24 \\
x & =-8
\end{aligned}
$$

2) $\frac{2 x+4}{3}=\frac{x}{6}$

$$
\begin{aligned}
6\left(\frac{2 x+4}{3}\right) & =6\left(\frac{x}{6}\right) \\
4 x+8 & =x \\
3 x & =-8 \\
x & =\frac{-8}{3}
\end{aligned}
$$

3) $\frac{2 x+4}{3}=\frac{x}{9}$

$$
\begin{aligned}
9\left(\frac{2 x+4}{3}\right) & =9\left(\frac{x}{9}\right) \\
6 x+12 & =x \\
5 x & =-12 \\
x & =\frac{-12}{5}
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Solve the following equations:
4) $\frac{2 x+4}{6}=\frac{x}{9}$

$$
\begin{aligned}
18\left(\frac{2 x+4}{6}\right) & =18\left(\frac{x}{9}\right) \\
6 x+12 & =2 x \\
4 x & =-12 \\
x & =-3
\end{aligned}
$$

5) $\frac{2(x+4)}{6}=\frac{x}{9}$

$$
\begin{aligned}
18\left(\frac{2(x+4)}{6}\right) & =18\left(\frac{x}{9}\right) \\
6(x+4) & =2 x \\
6 x+24 & =2 x \\
4 x & =-24 \\
x & =-6
\end{aligned}
$$

6) $\frac{2(x+4)}{6}=\frac{x+1}{9}$

$$
\begin{aligned}
18\left(\frac{2(x+4)}{6}\right) & =18\left(\frac{x+1}{9}\right) \\
6(x+4) & =2(x+1) \\
6 x+24 & =2 x+2 \\
4 x & =-22 \\
x & =\frac{-22}{4}=\frac{-11}{2}
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation \odot Bossmaths

Beta Exercise (contd.)
Solve the following equations:
7) $\frac{2(x+4)}{6}=\frac{x}{5}$

$$
\begin{aligned}
30\left(\frac{2(x+4)}{6}\right) & =30\left(\frac{x}{5}\right) \\
10(x+4) & =6 x \\
10 x+40 & =6 x \\
4 x & =-40 \\
x & =-10
\end{aligned}
$$

8) $\frac{2(x+4)+1}{6}=\frac{x}{5}-2$

$$
\begin{aligned}
30\left(\frac{2(x+4)+1}{6}\right) & =30\left(\frac{x}{5}-2\right) \\
10(x+4)+5 & =6 x-60 \\
10 x+45 & =6 x-60 \\
4 x & =-105 \\
x & =-\frac{105}{4}
\end{aligned}
$$

9) $\quad \frac{2(x+4)}{6}+1=\frac{x}{5}-2$

$$
\begin{aligned}
30\left(\frac{2(x+4)}{6}+1\right) & =30\left(\frac{x}{5}-2\right) \\
10(x+4)+30 & =6 x-60 \\
10 x+70 & =6 x-60 \\
4 x & =-130 \\
x & =\frac{-130}{4}=\frac{-65}{2}
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Gamma Exercise
Solve the following equations:

1) $\frac{3}{p}=\frac{5}{2 p+1}$

Multiply both sides by $p(2 p+1)$

$$
\begin{aligned}
3(2 p+1) & =5 p \\
6 p+3 & =5 p \\
p & =-3
\end{aligned}
$$

2) $\frac{8}{3 t-1}=\frac{5}{t}$
3) $\frac{2}{b}=\frac{-1}{b+7}$

Multiply both sides by $b(b+7)$

$$
\begin{aligned}
2(b+7) & =-1(b) \\
2 b+14 & =-b \\
3 b & =-14 \\
b & =\frac{-14}{3}
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Gamma Exercise (contd.)
Solve the following equations:
4) $\frac{5}{4-n}=\frac{7}{2 n}$ Multiply both sides by $2 n(4-n)$

$$
\begin{aligned}
2 n(5) & =7(4-n) \\
10 n & =28-7 n \\
17 n & =28 \\
n & =\frac{28}{17}
\end{aligned}
$$

5) $\frac{3}{1-2 d}=\frac{5}{2(d+6)}$ Multiply both sides by $2(d+6)(1-2 d)$

$$
\begin{aligned}
6(d+6) & =5(1-2 d) \\
6 d+36 & =5-10 d \\
16 d & =-31 \\
d & =\frac{-31}{16}
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Gamma Exercise (contd.)
Solve the following equations:

$$
\begin{aligned}
& \text { 6) } \frac{2}{x}-\frac{5}{3 x}=\frac{1}{x-1} \\
& \Rightarrow \frac{6}{3 x}-\frac{5}{3 x}=\frac{1}{x-1} \\
& \Rightarrow \frac{1}{3 x}=\frac{1}{x-1}
\end{aligned}
$$

Multiply both sides by $3 x(x-1)$

$$
\begin{aligned}
x-1 & =3 x \\
-1 & =2 x \\
-\frac{1}{2} & =x
\end{aligned}
$$

7) $\frac{2}{3(y+1)}=\frac{5}{7(5-y)}$ Multiply both sides by $21(y+1)(5-y)$

$$
\begin{aligned}
14(5-y) & =15(y+1) \\
70-14 y & =15 y+15 \\
55 & =29 y \\
\frac{55}{29} & =y
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Gamma Exercise (contd.)
Solve the following equations:
8) $\frac{3}{1-5 q}=\frac{8}{4(q+2)}$ Multiply both sides by $4(q+2)(1-5 q)$

$$
\begin{aligned}
12(q+2) & =8(1-5 q) \\
12 q+24 & =8-40 q \\
52 q & =-16 \\
q & =\frac{-16}{52}=\frac{-4}{13}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9) } \frac{7}{15 m}-\frac{3}{20 m}=\frac{1}{5+m} \\
& \Rightarrow \frac{28}{60 m}-\frac{9}{60 m}=\frac{1}{5+m} \\
& \Rightarrow \frac{19}{60 m}=\frac{1}{5+m}
\end{aligned}
$$

Multiply both sides by $60 \mathrm{~m}(5+\mathrm{m})$

$$
\begin{aligned}
19(5+m) & =60 m \\
95+19 m & =60 m \\
95 & =41 m \\
\frac{95}{41} & =m
\end{aligned}
$$

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation \odot BossMaths

Delta Exercise
Given that each of the three equations has a solution of $\frac{7}{2}$, find whole numbers to fill in the blanks.

1) $\frac{7 x}{5}+3=\frac{22+5 x}{5}$

Substituting $x=\frac{7}{2}$, we get

$$
\frac{49}{10}+\square=\frac{79}{10}
$$

Therefore, the blank is

$$
\frac{30}{10}=3
$$

2) $-3 x=\frac{21}{2}-6 x$

Multiplying both sides by 2 , we get $-6 x=\square-12 x$
Adding $12 x$ to both sides, we see $6 x=\square$ Substituting $x=\frac{7}{2}$, we see the blank is 21 .
3) $\frac{2}{7}=\frac{3}{3 x}$

Note that $\frac{2}{7}$ is the reciprocal of $\frac{7}{2}$.
Since $x=\frac{7}{2}, \frac{2}{7}=\frac{1}{x}$.
Hence $\frac{\square}{3 x}=\frac{1}{x}$. Therefore, the blank is 3 .

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation \odot BossMaths

Explain the mistake

Alice is trying to solve the following equation:

$$
\frac{p}{7}+9=\frac{2 p}{7}
$$

Alice decides to multiply both sides of the equation by 7 . She writes:

$$
\begin{aligned}
p+9 & =2 p \\
9 & =p
\end{aligned}
$$

What mistake has Alice made?

$$
\begin{aligned}
& 7\left(\frac{p}{7}+9\right)=7\left(\frac{2 p}{7}\right) \\
& \Rightarrow p+63=2 p
\end{aligned}
$$

Alice wrote $p+q=2 p$. It appears that she did not multiply the 9 by 7 .

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation \odot BossMaths

Exam-style question
Solve the following equations:
a) $\frac{7+4 x}{5}=\frac{2 x+9}{3}$

$$
\begin{aligned}
3(7+4 x) & =5(2 x+9) \\
21+12 x & =10 x+45 \\
2 x & =24 \\
x & =12
\end{aligned}
$$

b) $\frac{5}{7+4 x}=\frac{3}{2 x+9}$

$$
\begin{aligned}
5(2 x+9) & =3(7+4 x) \text { same as above } \\
x & =12
\end{aligned}
$$

c) What do you notice?

The equations have the same solution.

A17b Part 2 Solving equations involving algebraic fractions where the unknown is on both sides of the equation © BossMaths

Challenge

The following equations have no solutions:
$\frac{6}{7+3 x}=\frac{4}{2 x-5}$

$$
\frac{9}{10+6 x}=\frac{3}{2 x+7}
$$

$$
\frac{-4}{5 x-1}=\frac{8}{3-10 x}
$$

a) Can you explain why they have no solutions?

$$
\begin{aligned}
6(2 x-5) & =4(7+3 x) \Rightarrow 12 x-30=28+12 x \\
9(2 x+7) & =3(10+6 x) \Rightarrow 18 x+63=30+18 x \\
-4(3-10 x) & =8(5 x-1) \Rightarrow-12+40 x=40 x-8
\end{aligned}
$$

All are of the form $a x+b=a x+c$, with $b \neq c$.
These have no solutions.
b) Come up with some equations involving algebraic fractions that also have no solutions.

$$
\text { e.g. } \frac{3}{2 x+5}=\frac{12}{8 x+7}
$$

