G20d Trigonometry with right-angled triangles in 3D shapes © BossMaths

Alpha Exercise 1

Answer the following correct to the nearest 0.1°

(a) Find the angle between JQ and the plane OPQR.

(b) Find the angle between JQ and the plane JKLM.

$$
\angle Q J L=\angle J Q O=15.6^{\circ}
$$

(c) Find the angle between JQ and the plane JMNO.

$$
\angle Q J N=\sin ^{-1}\left(\frac{13}{\sqrt{221}}\right)
$$

or $\tan ^{-1}\left(\frac{13}{\sqrt{52}}\right)$

$$
=61.0^{0}
$$

G20d Trigonometry with right-angled triangles in 3D shapes © BossMaths

Answer the following correct to the nearest 0.1°

(a) Find the angle between SV and the plane RSTU.

$$
\begin{aligned}
\angle X V S & =\tan ^{-1}\left(\frac{5}{\sqrt{157}}\right) \\
& =21.8^{\circ}
\end{aligned}
$$

(b) Find the angle between SV and the plane STYX.

$$
\angle V S Y=\tan ^{-1}\left(\frac{11}{\sqrt{61}}\right)
$$

$$
=54.6^{\circ}
$$

(c) Find the angle between SV and the plane VWXY.

$$
\angle X V S=\angle V S U=21.8^{\circ}
$$

G20d Trigonometry with right-angled triangles in 3D shapes © BossMaths

Beta Exercise
(a) Find the length AH, correct to the nearest 0.1 cm .

$$
\begin{aligned}
& H F=\sqrt{6^{2}+11^{2}}=\sqrt{157} \\
& A H=\frac{\sqrt{157}}{\cos (27)}=14.1 \mathrm{~cm}
\end{aligned}
$$

(b) Find the length SV, correct to the nearest 0.1 cm .

$$
S V=\frac{5}{\cos (54)}=8.5 \mathrm{~cm}
$$

(c) Find the length TW, correct to the nearest 0.1 cm .

$$
\begin{aligned}
T V & =5 \tan (54) \\
& =6.881 \ldots \mathrm{~cm} \\
T W & =\sqrt{6.881 \omega^{2}-4^{2}}=5.6 \mathrm{~cm}
\end{aligned}
$$

G20d Trigonometry with right-angled triangles in 3D shapes © BossMaths

Find the angle between each diagonal and the shaded plane
(a)

$$
\sqrt{12^{2}+9^{2}}=15
$$

$$
\theta=\cos ^{-1}\left(\frac{15}{16.55}\right)
$$

$$
=25.0^{\circ}
$$

(b)

$$
\sqrt{15^{2}+16^{2}}=\sqrt{481}
$$

$$
\theta=\cos ^{-1}\left(\frac{\sqrt{481}}{27.75}\right)
$$

$$
=37.8^{\circ}
$$

G20d Trigonometry with right-angled triangles in 3D shapes © BossMaths

Here is a triangular prism.
The triangular faces are equilateral triangles.
(a) Find the length TX

$$
T X=\sqrt{20^{2}+12^{2}}=\sqrt{544}=23.3 \mathrm{~cm}
$$

(b) M is the mid-point of UV. Find the length MT.

$$
M T=12 \sin \left(60^{\circ}\right)=10.4 \mathrm{~cm}
$$

(c) Find the angle between TX and the plane UVXY.

$$
\begin{aligned}
\angle T X M & =\sin ^{-1}\left(\frac{10.39 \cdots}{23.32 \cdots}\right) \\
& =26.5^{\circ}
\end{aligned}
$$

G20d Trigonometry with right-angled triangles in 3D shapes © BossMaths

Explain the mistake

Molly writes:
The angle between CH and the plane GHIJ is 42°, and the angle between CH and the plane CJGF is 48°.

Molly has made a mistake. Identify the mistake and correct it.
The angle between CH and CJGF is 48°, but the angle between CH and GHIJ is not 42°.

$$
\begin{aligned}
\text { Length } C H & =\frac{10}{\cos (42)}=13.45 \ldots \mathrm{~cm} \\
\angle C H J & =\sin ^{-1}\left(\frac{5}{13.45 \ldots}\right)
\end{aligned}
$$

The angle between CH and GHIJ is 21.8°.

G20d Trigonometry with right-angled triangles
in 3D shapes © BossMaths

Exam-style question

This pyramid has a square base of length 60 m . The length from a corner of the base to the top of the pyramid is 91 m .

Find the angle between AB and the plane BCDE .

Right-angled isosceles

$$
\begin{aligned}
E M & =\sqrt{\frac{60^{2}}{2}} \\
& =\sqrt{1800} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\angle A E M & =\cos ^{-1}\left(\frac{\sqrt{1800}}{91}\right) \\
& =62.2^{\circ}
\end{aligned}
$$

