

Higher worksheet

- 1) Find the next two terms in this arithmetic sequence: $-11, -14, -17, -20, -23, \dots$
- 2) Find the next two terms in this Fibonacci-type sequence: 8, -3, 5, 2, 7,...
- 3) Find the next term in this geometric sequence: 2, 12, 72, 432, 2592,...
- 4) Find the missing term in this arithmetic sequence: 11, 14, ..., 20, 23,
- 5) Find the missing term in this geometric sequence: $-5, -10, \dots, -40, -80,$
- 6) What type of sequence is this?13, 17, 21, 25, 29,...
- 7) Find the missing term in this quadratic sequence: -1, ..., 17, 32, 51, 74,
- 8) What type of sequence is this?8, 19, 40, 71, 112,...
- 9) The *n*th term of a sequence is 3n + 7. What is the 20th term of the sequence?

Higher worksheet

- 10) The *n*th term of a sequence is 6n + 2. Write an expression for the k^{th} term of the sequence.
- 11) The *n*th term of a sequence is 2n 5. List the first four terms of the sequence.
- 12) The *n*th term of a sequence is -4n 3. List the first four terms of the sequence.
- 13) The *n*th term of a sequence is $3n^2 + 4n + 16$. What is the seventh term of the sequence?
- 14) Find the *n*th term of this arithmetic sequence: 9, 12, 15, 18, 21
- 15) Find the *n*th term of this linear sequence: $1, -3, -7, -11, -15, \dots$
- 16) Find the *n*th term of this quadratic sequence: $15, 18, 23, 30, 39, \dots$

Higher worksheet

17) Find the *n*th term of this quadratic sequence: 8, 5, 6, 11, 20,...

18) Find the *n*th term of this quadratic sequence: -26, -40, -64, -98, -142,...

19) The sixth term of an arithmetic sequence is -25.The fourteenth term is -49.Find an expression for the *n*th term of the sequence.

Higher worksheet

- Find the next two terms in this arithmetic sequence:
 -11, -14, -17, -20, -23,...
 -26, -29 (each term is 3 less than the term before)
- 2) Find the next two terms in this Fibonacci-type sequence:
 8, -3, 5, 2, 7,...
 9, 16 (each term is the sum of the two terms before)
- 3) Find the next term in this geometric sequence:
 2, 12, 72, 432, 2592,...
 15,552 (each term is 6 times the term before)
- 4) Find the missing term in this arithmetic sequence:
 11, 14, ..., 20, 23,
 17 (each term is 3 more than the term before)
- 5) Find the missing term in this geometric sequence:
 -5, -10, ..., -40, -80,
 -20 (each term is 2 times the term before)
- 6) What type of sequence is this?
 13, 17, 21, 25, 29,...
 Arithmetic (the sequence has a common first difference)
- 7) Find the missing term in this quadratic sequence:
 -1, ..., 17, 32, 51, 74,
 6 (Working backwards from 74, we need to first subtract 23, then 19, then 15 to get to 17. To get to the missing number, we therefore need to subtract 11.
- 8) What type of sequence is this?
 8, 19, 40, 71, 112,...
 Quadratic (the sequence has a constant second difference but not a constant first difference)
- 9) The *n*th term of a sequence is 3n + 7. What is the 20th term of the sequence? $3 \times 20 + 7 = 67$

Higher worksheet

- 10) The *n*th term of a sequence is 6n + 2. Write an expression for the k^{th} term of the sequence. $6 \times k + 2 = 6k + 2$
- 11) The *n*th term of a sequence is 2n 5. List the first four terms of the sequence. -3, -1, 1, 3
- 12) The *n*th term of a sequence is -4n 3. List the first four terms of the sequence. -7, -11, -15, -19
- 13) The *n*th term of a sequence is $3n^2 + 4n + 16$. What is the seventh term of the sequence? $3 \times 7^2 + 4 \times 7 + 16 = 191$
- 14) Find the *n*th term of this arithmetic sequence: 9, 12, 15, 18, 21 3n + 6
- 15) Find the *n*th term of this linear sequence: $1, -3, -7, -11, -15, \dots$ -4n + 5
- 16) Find the *n*th term of this quadratic sequence: 15, 18, 23, 30, 39,... First differences: 3, 5, 7, 9,... Second differences: 2, 2, 2, 2, ... Therefore, the sequence is of the form $n^2 + bn + c$

n^2	1	4	9	16	25
14	14	14	14	14	14
Given sequence	15	18	23	30	39

The *n*th term is $n^2 + 14$

Higher worksheet

17) Find the *n*th term of this quadratic sequence: 8, 5, 6, 11, 20,... First differences: -3, 1, 5, 9,... Second differences: 4, 4, 4, 4,... Therefore the sequence is of the form $2n^2 + bn + c$ $2n^2$ 2 8 18

$2n^2$	2	8	18	32	50
-9n + 15	6	-3	-12	-21	-30
Given sequence	8	5	6	11	$\overline{20}$

The *n*th term is $2n^2 - 9n + 15$

18) Find the *n*th term of this quadratic sequence:

 $-26, -40, -64, -98, -142, \dots$

First differences: -14, -24, -34, -44,...

Second differences: -10, -10, -10, -10,...

Therefore the sequence is of the form $-5n^2 + bn + c$

$-5n^{2}$	-5	-20	-45	-80	-125
n - 22	-21	-20	-19	-18	-17
Given sequence	-26	-40	-64	-98	-142

The *n*th term is $-5n^2 + n - 22$

19) The sixth term of an arithmetic sequence is -25. The fourteenth term is -49.Find an expression for the *n*th term of the sequence.

The fourteenth term is 8 terms further along the sequence than the sixth term. -49 is 24 less than -25.

So the sequence is going *down* in steps of $24 \div 8 = 3$ ie going up in steps of -3.

Therefore the *n*th term is of the form -3n + c, where *c* is a constant. When n = 6, we know -3n + c = -25 i.e. -18 + c = 25. Therefore c = -7.

So the *n*th term is -3n - 7.

We can test this by substituting n = 14 and making sure the fourteenth term works out to be -49.