OCR Paper 6H Practice Booklet

22 practice questions based on the advance information
Copies of this booklet, as well as hints \& solutions, are available at bossmaths.com/advanceinfo

Question 1
Given that $\frac{\left(x^{-3}\right)^{5}}{x^{-7}} \times \frac{x^{-\frac{1}{2}}}{x} \equiv x^{m}$, find the value of m.

Question 2
(a) Circle the cube number:
9260
5832
4911
2748

Try finding the
cube root of each number on your
(b) A pudding recipe for 4 people requires 120 grams of butter.

Calculate the amount of butter needed to make the pudding for 12 people.

Question 3
The value of some machinery decreases by a fixed 4.5% every year.
Ten years after its construction, the machinery had a value of $£ 820.31$.
What was the value of the machinery 7 years after its construction?
Annual multiplier $=0.955$
7 years after construction is 3 years before it is 10 year dd.
\qquad

Question 4
(a) Factorise $16 x^{2}-9$ Difference of two squares
(b) Expand and simplify $t(7 t-4)-5(7 t-4)+t(4-7 t)+3(7 t-4)$

There is a shortcut here, but even if you don't spot it, you can just expand and then collect like terms: $7 t^{2}-4 t-35 t+20+\ldots$

Question 5
Roberto is x years old.
Diogo is 5 years younger than Roberto. $x-5$
Mohamed is 4 years older than Diogo. $x-1$
(a) Write an expression, in terms of x, for the sum of the ages, in years, of Roberto, Diogo, and Mohamed.

Moacir is 54 years older than Roberto. $x+54$
Moacir's age is equal to the sum of the ages of Roberto, Diogo, and Mohamed.
(b) Find Diogo's age.

$$
x+54=\text { your expression from (a) }
$$

Solve to find x, which is Roberto's age. Remember to give Diogo's age as your answer.

Question 6

(a) Write down the three inequalities that define the shaded region.

(b) x and y are integers. On the diagram, mark with a cross each of the three points that satisfy the three inequalities you wrote down in part (a).

Question 7
(1) The highest common factor of m and n is 21 .
(2) The lowest common multiple of m and n is 126 .
(3) m is an even number less than 50 .

Find the values of m and n.
(1) n and n are multiples of 21
(2) m and n are factors of 126

So m and n could be _,_,_,_, or ___. m must be because of (3) n must be to make sure (1) and (2) are true.

Question 8
The circumference of a circle is 80 cm .
Calculate the area of the circle, correct to 3 significant figures.

$$
\begin{aligned}
C=2 \pi r & \Rightarrow 80=2 \pi r \\
& \Rightarrow r=\ldots
\end{aligned}
$$

$$
A=\pi r^{2}=
$$

Question 9
The diagram shows a trapezium $A B C D$ and one of its diagonals, $B D$.

Use the cosine rule to find this angle. Then find h.

Question 10

This cumulative frequency graph shows information about the heights, in cm , of rowers at a rowing club.

A rower is selected at random from the club. Estimate the probability that this rower is more than 186 cm tall.

How many rowers are there in total?
How many can we estimate are over 186 cm ?

Question 11
y is directly proportional to \sqrt{x}.
When $x=4 \times 10^{40}, y=15$.
Find the value of y when $x=9 \times 10^{26}$. Write your answer in standard form.

$$
\sqrt{x}
$$

$$
y
$$

4×10^{40}
2×10^{20}
15 $\downarrow \times \ldots$

9×10^{26}

$$
\text { When } x=9 \times 10^{26}, y=
$$

Question 12
At the start of an experiment, the mass of the bacteria in a peri dish is 1.35 g . The mass of the bacteria increases by 5.8% every hour. A scientist notes the mass of the bacteria every hour.
After n hours, the scientist recorded a mass of 2.00 grams. Find the value of n.
On a calculator, type 1.35×1.058 and press $=$ This gives the mass after I hows. It is less than 2.00 grams.
Now hit ANS $\times 1.058$ and repeatedly press \Rightarrow until the mass reaches 2.00 grans.

Keep court of how many times you press \Rightarrow altogether to find $n=$ \square
Question 13
Write $x^{2}+10 x-19$ in the form $(x+a)^{2}+b$

$$
\begin{aligned}
& (x+a)(x+a)+b \\
\equiv & x^{2}+a x+a x+a^{2}+b \\
\equiv & x^{2}+2 a x+a^{2}+b
\end{aligned}
$$

$y=f(x)+a$ is a translation of $y=f(x)$ by a units Question 14 in the positive y-direction.
On the grid, sketch the graph of $y=\cos x^{\circ}+1$ for $-360^{\circ} \leq x \leq 360^{\circ}$

Question 15
The chemical element gallium has a density of $5.91 \mathrm{~g} / \mathrm{cm}^{3}$.
Take care!
Convert this density into $\mathrm{kg} / \mathrm{m}^{3}$. $1 \mathrm{~m}^{3}$ is not $100 \mathrm{~cm}^{3}$

Question 16
The diagram shows a triangular prism.
The triangular faces of this prism are equilateral triangles.

A rectangular face of the triangular prism is then glued to a congruent face of a cuboid measuring $12 \mathrm{~cm} \times 12 \mathrm{~cm} \times 20 \mathrm{~cm}$.

Once glued, the resulting solid is a pentagonal prism.

Work out the surface area of this pentagonal prism. Round your answer to 3 significant figures.

- Each rectangular face is a

$$
20 \times 12=240 \mathrm{~cm}^{2}
$$ rectangle.

- Each pentagonal face is made up of a $12 \times 12=144 \mathrm{~cm}^{2}$ square and an
equilateral triangle with side length 12 cm . What is the area of this triangle?

Question 17

Show that these triangles are congruent.

Question 18
P and Q are two mathematically similar pyramids.
Q has a surface area of $90 \mathrm{~cm}^{2}$ and a volume of $54 \mathrm{~cm}^{3}$.
P has a surface area of $40 \mathrm{~cm}^{2}$. Find the volume of P.
$Q \rightarrow P$
Area scale factor $=\frac{40}{90}=\frac{4}{9}$

Length Scale factor $=\ldots$
Volume scale factor =
\therefore Volume of $P=\ldots$

Question 19
Solve $x+4=\frac{10}{x}$
Round your solutions to 3 decimal places.

Multiply both sides by x

$$
x^{2}+4 x=10
$$

Question 20
(a) Make p the subject of the formula $m=\frac{8(q+3 p)}{p}$

Multiply both sides by p

$$
M p=8 q+24 p
$$

$$
\begin{aligned}
& m p-24 p=8 q \\
& p(m-24)=8 q
\end{aligned}
$$

Subtract $24 p$ from both sides

Factorise out p

$$
p=
$$

(b) Work out the value of p when $q=0.34$ and $m=0.7$

Question 21
Jonny plays a game which involves picking numbered cards.
The first bag contains four cards, numbered from 1 to 3 .
The second bag contains six cards, numbered from 1 to 5 .
Sony picks one card at random from each bag and multiplies the numbers on his two cards.
(a) Draw a sample space to show all the possible outcomes.

Players win a prize if the product of the numbers on their cards is even.
(b) Given that Jonny wins a prize, find the probability that the product of his two numbers is greater than 9 .

Number of products that are 10 or more Number of even products

Question 22

(a) Complete the table of values for $y=x^{2}-5$

x	-2	-1	0	1	2	3
y	-1					

(b) On the grid, draw the graph of $y=x^{2}-5$ for values of x from -2 to 3 .

(c) Write down the coordinates of the turning point of the graph.

