Name: Solutions

Practice Paper for AQA Level 2 Certificate **FURTHER MATHEMATICS**Paper 1 Non-Calculator

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

· mathematical instruments.

You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- · The marks for questions are shown in brackets
- The maximum mark for this paper is 80.
- You may ask for more graph paper and tracing paper.
 These must be tagged securely to this answer book.

Copies of this paper and worked solutions can be found at bossmaths.com/level2fmpractice, also accessible via this QR code.

Answer all questions in the spaces provided.

1 Factorise fully $6a^4b - 15ab^3$

[2 marks]

Answer
$$3ab(2a^3-5b^2)$$

Work out the values of p, q and r such that $2x^2 - 8x + p \equiv q(x+r)^2 + 19$

[3 marks]

$$q=2$$
, so $2x^2-8x+p=2(x+r)^2+19$

$$\Rightarrow 2n^2 - 8n + \rho = 2(x^2 + 2rx + r^2) + 19$$

$$\Rightarrow 2x^2 - 8x + p = 2x^2 + 4rx + 2r^2 + 19$$

Equating coefficients:
$$4r = -8 \Rightarrow r = -2$$

 $\rho = 2r^2 + 19 = 2(-2)^2 + 19 = 27$

$$p = _{27} q = _{2} r = _{2}$$

3 Work out $\binom{2}{4} \cdot \binom{6}{5} \binom{8}{10} \cdot \binom{1}{3} = \binom{8}{10} \cdot \binom{1}{3} = \binom{1}{10} \cdot \binom{1}{3} = \binom{2}{10} = 2$
76 20 82 19
$1 + 12x^2 - 12x - 5$
4 How many numbers satisfy all of the following conditions?
 The number is a four-digit integer The second digit is 8. The other digits are all odd numbers.
$\frac{d^2y}{dx^2} = 20 + 24 - 5 = 39$ [3 marks]
Minimum
Five choices avoilable for each of these three:
1,3,5,7,9
:. there are 5x5x5 = 125 numbers
that satisfy all the conditions.
g(x) -1
$(x^{2}+3) - 1$ Answer 125

 $2(x^{2}+3)-1$ $= 2x^{2}+6-1$

5 Simplify $\sqrt{8}(\sqrt{98} + \sqrt{32} - \sqrt{50})$ writing your answer as an integer.

[3 marks]

$$2\sqrt{2}(7\sqrt{2}+4\sqrt{2}-5\sqrt{2})$$

$$= 2\sqrt{2}(6\sqrt{2})$$

$$= 2 \times 6 \times \sqrt{2} \times \sqrt{2} = 12 \times 2 = 24$$

6 Solve $x^2 - x < 12$

[2 marks]

$$x^2 - x - 12 < 0$$

$$\Rightarrow (x-4)(x+3) < 0$$

Answer -3 < x < 4

- 7 Use **matrix multiplication** to show that, in the x-y plane,
 - a reflection in the line y = x, followed by
 - a reflection in the line y = -x

is equivalent to a rotation of 180° about the origin.

[3 marks]

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

which is the matrix for a 180° rotation about the origin.

NOTE THE CORRECT ORDER OF THE MATRIX MULTIPLICATION!

(In this particular question, swapping the order will still give the same result, but make sure to get the order correct to get all the marks.)

The curve shown has equation $y = ab^{-x}$ where a and b are positive integers. The point (2, 0.75) lies on the curve. Find the values of a and b.

(0,3) lies on the curve so
$$3 = a(b^0)$$

i.e. $3 = a$

(2, 0.75) lies on the curve so
$$0.75 = 3(b^{-2})$$

$$\Rightarrow 0.25 = b^{-2} \Rightarrow \frac{1}{4} = \frac{1}{b^2}$$

$$a = 3$$
 $b = 2$

The curve with equation $y = x^5 + 4x^3 - 6x^2 - 5x + 13$ has a turning point at (1,7). Determine whether this point is a maximum or a minimum.

[2 marks]

$$\frac{dy}{dx} = 5x^4 + 12x^2 - 12x - 5$$

$$\frac{d^2y}{dx^2} = 20x^3 + 24x - 12$$

When
$$x=1$$
, $\frac{d^2y}{dx^2} = 20 + 24 - 12 = 32$

Answer Minimum

$$\frac{d^2y}{dx^2} > 0$$

10
$$f(x) = 2x - 1$$

 $g(x) = x^2 + 3$

Work out fg(x)

[2 marks]

$$f(g(x)) = 2g(x) - 1$$

$$= 2(x^{2}+3)-1$$

$$= 2x^2 + 6 - 1$$

= Answer
$$2n^2 + 5$$

11 (a) On the axes, sketch $y = \cos x$ for $-360^{\circ} \leqslant x \leqslant 360^{\circ}$

[3 marks]

(b) You are given that $180^{\circ} < u < 360^{\circ}$ and that $\tan u = 1$ Find the value of u.

[1 mark]

tan u = 1 when u = 45° ± multiples
of 180°

12 The nth term of a sequence is U_n

$$U_n = \frac{4n - 11}{5n}$$

(a) Work out the least value of n for which ${\it U}_n \geq 0.7$

[3 marks]

$$\frac{4n-11}{5n} > 0.7$$

(b) Write down the limiting value of U_n as $n \to \infty$

[1 mark]

Answer
$$\frac{4}{5}$$
 or 0.8

13 (a) Show that $(2\sin\theta + \cos\theta)(\cos\theta - 2\sin\theta) + 2 \equiv 5\cos^2\theta - 2$

> Difference of [3 marks]

 $(2\sin\theta + \cos\theta)(\cos\theta - 2\sin\theta) + 2$

 $= \cos^2 \theta - 4\sin^2 \theta + 2$

 $= \cos^2 \theta - 4(1 - \cos^2 \theta) + 2$

 $= \cos^2 \theta - 4 + 4\cos^2 \theta + 2$

= $5\cos^2\theta - 2$ as required.

(b) Hence, or otherwise, find the value of $(2\sin 60^{\circ} + \cos 60^{\circ})(\cos 60^{\circ} - 2\sin 60^{\circ})$

[3 marks]

Subtracting 2 from each side of the given identity and substituting 0 = 60:

(2sin 60 + cos 60) (cos 60 - 2sin 60)

 $= 5\cos^2 60 - 4 = 5\left(\frac{1}{2}\right)^2 - 4$

 $=\frac{5}{4}-\frac{16}{4}$

Answer _________

14 The table lists the equations of three straight lines.

	Equation of line	Gradient	y-intercept
0	y = 7 - 3x	-3	7
2	5x + 2y = 20	5/2	0/
3	$\frac{y-21}{x-5}=3$	3	6

Fill in the gradients and *y*-intercepts of each line.

[6 marks]

Workings for 2 and 3

$$5x + 2y = 20$$

$$\Rightarrow 2y = -5x + 20$$

$$\Rightarrow y = -\frac{5}{2}x + 10$$

3
$$\frac{y-21}{x-5} = 3$$

Note this is in the form

 $\frac{y-y_1}{x-x_1} = m$
 $\Rightarrow y-21 = 3(x-5)$
 $\Rightarrow y-21 = 3x-15$
 $\Rightarrow y = 3x+6$

The circle with equation $(x + 5)^2 + (y - 3)^2 = 25$ has three points of 15 (a) intersection with the coordinate axes. Find the coordinates of the these three points.

3 By Pythagoras, the two right-angled have a third side length of

4) Hence the circle intersects at -1 and 9 on the x-oxis.

Answer_(0,3) (-1,0) (-9,0)

(b) The three points of intersection are joined to form a triangle. Work out the ratio of the length of this triangle's shortest side to its longest side. Write your answer in the form 1: n, where n is an integer.

[4 marks]

[3 marks]

110: 190 110: 19110 = 110: 3110

Answer

16 (a) The point *P* has coordinates (2,a). *P* lies on the curve with equation $y = x^3 + 5x^2 - 4x - 20$. Find the value of *a*.

[1 mark]

$$a = 2^3 + 5(2^2) - 4(2) - 20$$

= 8 + 20 - 8 - 20 = 0

Answer ____

(b) Find the equation of the normal to the curve at point P, writing your answer in the form y = mx + c

[4 marks]

$$\frac{dy}{dx} = 3x^2 + 10x - 4$$

At (2,0), gradient of curve = 3(22) + 10(2)-4

$$= 12 + 20 - 4 = 28$$

: Gradient of normal = - 1

Equation of normal: $y-0=-\frac{1}{28}(x-2)$

Answer $y = -\frac{1}{28}x + \frac{1}{4}$

17 $f(x) = x^3 + ax^2 + bx + c$

You are given that $x^2 - x - 12$ is a factor of f(x). You are also given that $x^2 - 9x + 20$ is a factor of f(x).

Find a, b, and c.

[5 marks]

$$x^2 - x - 12 = (x - 4)(x + 3)$$

$$x^2 - 9x + 20 = (x-4)(x-5)$$

$$f(x) = (x-4)(x+3)(x-5)$$

$$= (\chi^2 - \chi - 12)(\chi - 5)$$

$$= n^3 - n^2 - 12x - 5n^2 + 5n + 60$$

$$= \chi^3 - 6\chi^2 - 7\chi + 60$$

$$a = -6$$
 $b = -7$ $c = 60$

18 Solve the simultaneous equations.

$$3x + 3y + 6z = 9$$

 $x - y + 2z = -1$
 $5x - 2z = 2$

Do **not** use trial and improvement. You **must** show your working.

[5 marks]

$$0\div 3 \qquad x + y + 2z = 3 \qquad (4)$$

$$2 \qquad \chi - y + 2z = -1$$

Adding
$$2x + 4z = 2$$

$$\div 2 \qquad \qquad \qquad +2z = | \qquad \boxed{5}$$

$$\boxed{3} \qquad 5x \qquad -2z = 2$$

$$\Rightarrow \chi = \frac{1}{2}$$

Sub into (3) to find
$$Z = \frac{1}{4}$$

$$x = \frac{1}{2} \quad y = \frac{2}{4}$$

19 This circle has radius 7 cm.

You are given that a:b:c:d=6:2:3:1

i.e.
$$a = 6d$$

 $b = 2d$
 $c = 3d$

Diagram not drawn accurately.

Find the shaded area in cm², giving your answer in the form $\frac{u\sqrt{v}}{w}$, where u, v, and w are integers.

[5 marks]

$$2a + b + c + d = 180$$

$$\Rightarrow$$
 12d + 2d + 3d + d = 180

$$\Rightarrow 18d = 180 \Rightarrow d = 10 \Rightarrow \alpha = 60^{\circ}$$

.. Shaded triangle is equilateral.

Area =
$$\frac{1}{2}$$
 x 7 x 7 sin (60)

$$=\frac{49}{2}\times\frac{\sqrt{3}}{2}=\frac{49\sqrt{3}}{4}$$

You are given that $10 \times 5^{17} + 23 \times 5^{18} = 5^n$ Find the value of n.

[4 marks]

10 × 517 + 23 × 518

 $= 2 \times 5 \times 5^{17} + 23 \times 5^{18}$

 $= 2 \times 5^{18} + 23 \times 5^{18}$

 $= 25 \times 5^{18}$

 $= 5^2 \times 5^{18}$

 $= 5^{20}$

n = _____20

21 Prove that the difference between the squares of two different odd numbers is always a multiple of 8.

[5 marks]

Let m, n be positive integers, with m > n. Then 2m+1 and 2m+1 are odd

 $(2m+1)^2 - (2n+1)^2$

 $= (4m^2 + 4m + 1) - (4n^2 + 4n + 1)$

 $= 4m^2 + 4m - 4n^2 - 4n$

 $= 4(m^2 - n^2 + m - n)$

 $= 4\left((m+n)(m-n) + (m-n) \right)$

= 4 (m+n+1) (m-n)

If mand n are both even or both odd, then (m-n) is even.

Otherwise (m+n+1) is even.

i.e. either (m+n+1) or (m-n) is even

: 4(m+n+1) (m-n) is a product of 4 and another even number so a multiple of 8.