| Name: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

## Practice Paper for AQA Level 2 Certificate **FURTHER MATHEMATICS**Paper 2 Calculator

Time allowed: 1 hour 45 minutes

## **Materials**

For this paper you must have:

- a calculator
- · mathematical instruments.

## Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

## Information

- The marks for questions are shown in brackets
- The maximum mark for this paper is 80.
- You may ask for more graph paper and tracing paper.
   These must be tagged securely to this answer book.

Copies of this paper and worked solutions can be found at bossmaths.com/level2fmpractice, also accessible via this QR code.



|   | Answer all questions in the spaces provided.                                                                                                                                 |           |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| 1 | A has coordinates $(3,5)$ and B has coordinates $(11,29)$ . P lies on the line throug such that the ratio of the distance AB to the distance AP is 4:5. Find the coordinates |           |  |  |  |
|   |                                                                                                                                                                              | [3 marks] |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   | Answer                                                                                                                                                                       |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
| 2 | The first terms of a linear sequence are:                                                                                                                                    |           |  |  |  |
|   | 9a - 2b, 5a + b, a + 4b,                                                                                                                                                     |           |  |  |  |
|   | Work out an expression for the $nth$ term of this sequence.                                                                                                                  |           |  |  |  |
|   |                                                                                                                                                                              | [3 marks] |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |
|   | Answer                                                                                                                                                                       | -         |  |  |  |
|   |                                                                                                                                                                              |           |  |  |  |

$$f(x) = \frac{5x - 4}{7x + 9}$$

Which value of x can **not** be in the domain of f(x)? Circle your answer.

[1 mark]

$$-\frac{9}{7}$$

$$-\frac{7}{9}$$

4 Write down the value of x.

[1 mark]



$$x =$$

| $f(x) = 3x^3 - 4x + 25$                                                                   |                                                                       |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Find the set of values of $x$ for which $f(x)$ is decreasing.                             |                                                                       |
| · · ·                                                                                     | [2 marks]                                                             |
|                                                                                           | [3 marks]                                                             |
|                                                                                           |                                                                       |
|                                                                                           |                                                                       |
|                                                                                           |                                                                       |
|                                                                                           |                                                                       |
|                                                                                           | <del></del>                                                           |
|                                                                                           | <del></del>                                                           |
|                                                                                           |                                                                       |
|                                                                                           |                                                                       |
|                                                                                           |                                                                       |
|                                                                                           |                                                                       |
| Answer                                                                                    |                                                                       |
|                                                                                           |                                                                       |
| Solve $\frac{6}{2} = 1 + \frac{1}{2}$ , giving your solutions to 3 significant figures.   |                                                                       |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
| Solve $\frac{6}{x} = 1 + \frac{1}{x^2}$ , giving your solutions to 3 significant figures. | [2 marks]                                                             |
|                                                                                           | Find the set of values of $x$ for which $f(x)$ is decreasing.  Answer |

| 7 | Lico matrix multiplication to show that in the consultance                                                                           |           |
|---|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
| , | Use <b>matrix multiplication</b> to show that, in the $x-y$ plane,                                                                   |           |
|   | <ul> <li>a reflection in the line y-axis, followed by</li> <li>a rotation by 90° anti-clockwise about (0,0) is equivalent</li> </ul> |           |
|   | is equivalent to a reflection in the line $y = -x$                                                                                   |           |
|   |                                                                                                                                      | [3 marks] |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |
|   |                                                                                                                                      |           |

8 (a) The curve shown has equation  $y = 3x^2 - 12$ . Fill in the *x*-coordinates of the points where the curve intersects the *x*-axis.



(b) Hence, or otherwise, sketch the curve with equation  $y = x^3 - 12x + 1$ . Clearly show any stationary points and label the coordinates of these points.

[3 marks]

[2 marks]

| 9  | Show that $\frac{\cos^2 x}{x^2}$ | $\theta$ +tan $\theta$ +sin <sup>2</sup> $\theta$ | _ 1 _ 1                                           |             |
|----|----------------------------------|---------------------------------------------------|---------------------------------------------------|-------------|
|    | Show that —                      | $sin\theta$                                       | $r = \frac{1}{\cos\theta} + \frac{1}{\sin\theta}$ |             |
|    |                                  |                                                   |                                                   | [3 marks]   |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   | <del></del> |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
| 40 |                                  |                                                   |                                                   |             |
| 10 | Poorrongo 44 -                   | 3+4w to p                                         | naka w the subject                                |             |
|    | Realiange V -                    | $-\sqrt{\frac{u+1}{u+1}}$ to II                   | nake $u$ the subject                              |             |
|    |                                  | •                                                 |                                                   |             |
|    |                                  |                                                   |                                                   | [3 marks]   |
|    |                                  |                                                   |                                                   | [5 marks]   |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  | _                                                 |                                                   |             |
|    | A                                | Answer                                            |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |
|    |                                  |                                                   |                                                   |             |

| 11 | (a) | A function f is given by |   |
|----|-----|--------------------------|---|
|    |     | f(x)                     | = |
|    |     |                          | = |

$$x(x) = -2x x < -1$$
  
=  $x + 3 -1 \le x < 2$   
=  $-x^2 + 4x + 1 x \ge 2$ 

Plot y = f(x) on the axes given.

[3 marks]



| (b | Work out all | the values | of $x$ fo | r which | f(x) | = 3 |
|----|--------------|------------|-----------|---------|------|-----|
|----|--------------|------------|-----------|---------|------|-----|

Answer \_\_\_\_\_

[4 marks]

|      | <br> |  |
|------|------|--|
| <br> | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      | <br> |  |

| 12 | Given that $(x + 3)$ is a factor of $x^3 - 2x^2 - 2px + 3p^2$ where $p$ is a constant two possible values of $p$ . | t, find the |
|----|--------------------------------------------------------------------------------------------------------------------|-------------|
|    |                                                                                                                    | [4 marks]   |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    | p =                                                                                                                |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |
|    |                                                                                                                    |             |

| 13 | f(x) = 2x + 3                    |           |
|----|----------------------------------|-----------|
|    | Solve $f^{-1}(2k) = \frac{k}{5}$ |           |
|    |                                  | [4 marks] |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    |                                  |           |
|    | Answer                           |           |
|    | / (10WO)                         |           |
|    |                                  |           |

| The following curve and straight line intersect at two points. Find the midpoint of the two points of intersection. |
|---------------------------------------------------------------------------------------------------------------------|
| $x^{2} + 7xy + 4y^{2} - 256 = 0$ $x - y - 8 = 0$                                                                    |
| Do <b>not</b> use trial and improvement. You <b>must</b> show your working.  [6 mail]                               |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
|                                                                                                                     |
| Answer                                                                                                              |

| 15 | PQRS is a kite.<br>P has coordinates $(0,6)$ .<br>Q has coordinates $(-4,-1)$ .<br>R has coordinates $(5,-4)$ .<br>Find the equation of the straight line that passes through Q and S, giving you | ır   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | answer in the form $ax + by + c = 0$ .                                                                                                                                                            |      |
|    | [4 mai                                                                                                                                                                                            | rks] |
|    |                                                                                                                                                                                                   |      |
|    |                                                                                                                                                                                                   |      |
|    |                                                                                                                                                                                                   |      |
|    |                                                                                                                                                                                                   |      |
|    |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| -  |                                                                                                                                                                                                   |      |
| _  |                                                                                                                                                                                                   |      |
| _  |                                                                                                                                                                                                   |      |
|    |                                                                                                                                                                                                   |      |
| _  |                                                                                                                                                                                                   |      |
| _  |                                                                                                                                                                                                   |      |
| _  |                                                                                                                                                                                                   |      |
| _  |                                                                                                                                                                                                   |      |
|    |                                                                                                                                                                                                   |      |
|    | Answer                                                                                                                                                                                            |      |

| 16 | a 20<br>cardl | ares of side length $x$ cm are cut from cm by 15 cm rectangular piece of poard. The carboard is then folded to see an open-topped box. | x  cm       |     |  |  |
|----|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--|--|
|    | (a)           | Explain why $x$ must be less than 7.5 cm.                                                                                              | 20 cm [1 ma | rk] |  |  |
|    | (b)           | Show that $V = 4x^3 - 70x^2 + 300x$ , for $x < 7.5$ , where $V$ is the volume of the box in cm <sup>3</sup> . [2 marks]                |             |     |  |  |
|    | (c)           | Use calculus to work out the maximum possible volume of the box, giving your answer correct to 3 significant figures.  [4 marks]       |             |     |  |  |
|    |               |                                                                                                                                        |             |     |  |  |
|    |               |                                                                                                                                        |             |     |  |  |
|    |               | Answer                                                                                                                                 |             |     |  |  |

| 17 | The first term of a quadratic sequence is 4. The second term of this sequence is 3. The fourth term of this sequence is 7. The fifth term of this sequence is 12. |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | Find an expression for the <i>nth</i> term of this sequence.                                                                                                      |           |
|    |                                                                                                                                                                   | [6 marks] |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    |                                                                                                                                                                   |           |
|    | Answer                                                                                                                                                            |           |
|    |                                                                                                                                                                   |           |

Here is a triangular prism. The triangular faces are equilateral. *UV* has length 12 cm and *VX* has length 20 cm. Work out the size of angle *TXU*, giving your answer to the nearest 0.1°.



[5 marks]

Answer \_\_\_\_\_

| 19 | The diagram shows a circle with points $P$ , $Q$ , and $R$ on its circumference. The line shown is tangent to the circle at the point $R$ . |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | Angle SRP = 67°                                                                                                                             |  |  |  |  |  |  |
|    | Angle PRQ = 58°                                                                                                                             |  |  |  |  |  |  |
|    | Chord PQ has length 8.5 cm.                                                                                                                 |  |  |  |  |  |  |
|    | Find the length of chord <i>QR</i> , giving your answer correct to 3 significant figures.                                                   |  |  |  |  |  |  |
|    | $\mathcal{S}$                                                                                                                               |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    | R Not drawn accurately.                                                                                                                     |  |  |  |  |  |  |
|    | Not drawn accurately.                                                                                                                       |  |  |  |  |  |  |
|    | 58°                                                                                                                                         |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    | P                                                                                                                                           |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    | 8.5 cm                                                                                                                                      |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    | Q                                                                                                                                           |  |  |  |  |  |  |
|    | [4 marks]                                                                                                                                   |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |
|    |                                                                                                                                             |  |  |  |  |  |  |

cm

Answer

| 20 | A circle has a radius of $\sqrt{356}$ . The line with equation $y = \frac{8}{5}x - 33$ is tangent to this circle at the point $(20, -1)$ . |           |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|    | Find the coordinates of the centre of the circle.                                                                                          | [6 marks] |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    |                                                                                                                                            |           |  |
|    | Answer                                                                                                                                     |           |  |