Target 7 Sheet 02B

Question 1

n is an integer.

Show that 26n + 27 + (4n - 3)(2n + 1) is always a multiple of 8.

Question 2

Here is a cyclic quadrilateral on a circle with centre point as marked. Given that $s=134^\circ,$ work out the size of angle u.

Target 7 Sheet 02B

Question 1

n is an integer.

Show that 26n + 27 + (4n - 3)(2n + 1) is always a multiple of 8.

Expanding and simplifying, we obtain $8n^2 + 24n + 24$.

We can write this as $8(n^2 + 3n + 3)$.

This is always a multiple of 8.

Question 2

Here is a cyclic quadrilateral on a circle with centre point as marked. Given that $s=134^\circ,$ work out the size of angle u.

$$u = 247^{\circ}$$

