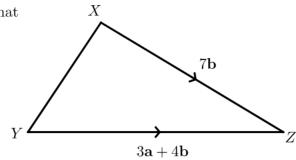
Target 7 Sheet 03B

Question 1

Q is the point on XY such that

$$\overrightarrow{XY} = 6\overrightarrow{QY}$$

Find the vector \overrightarrow{ZQ} in terms of **a** and **b**.



Question 2

n is a positive integer.

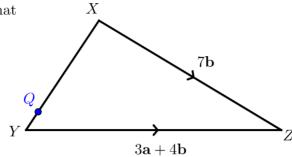
Show that $5n^2 + 44 - (n-4)^2$ is always even.

Question 1

Q is the point on XY such that

$$\overrightarrow{XY} = 6\overrightarrow{QY}$$

Find the vector \overrightarrow{ZQ} in terms of **a** and **b**.



First note that $\overrightarrow{XQ} = \frac{5}{6} \overrightarrow{XY}$.

$$\overrightarrow{XY} = \overrightarrow{XZ} + \overrightarrow{ZY}$$

= $\overrightarrow{XZ} + \left(-\overrightarrow{YZ}\right) = (7\mathbf{b}) + (-3\mathbf{a} - 4\mathbf{b}) = -3\mathbf{a} + 3\mathbf{b}$

So
$$\overrightarrow{XQ} = \frac{5}{6} \left(-3\mathbf{a} + 3\mathbf{b} \right) = -\frac{5}{2} \mathbf{a} + \frac{5}{2} \mathbf{b}$$

Now,
$$\overrightarrow{ZQ} = \overrightarrow{ZX} + \overrightarrow{XQ}$$

= $-\overrightarrow{XZ} + \overrightarrow{XQ} = (-7\mathbf{b}) + \left(-\frac{5}{2}\mathbf{a} + \frac{5}{2}\mathbf{b}\right) = -\frac{5}{2}\mathbf{a} - \frac{9}{2}\mathbf{b}$

Question 2

n is a positive integer.

Show that $5n^2 + 44 - (n-4)^2$ is always even.

Expanding and simplifying, we get $4n^2 + 8n + 28$

We can write this as $2(2n^2 + 4n + 14)$

This is always even.