Question 1

Q is the point on $X Y$ such that $\overrightarrow{X Q}=2 \overrightarrow{Q Y}$

Find the vector $\overrightarrow{Z Q}$ in terms of \mathbf{a} and \mathbf{b}.

Question 2

n is a positive integer.
Show that $7 n^{2}+29-(n-1)^{2}$ is always even.

Question 1

Q is the point on $X Y$ such that $\overrightarrow{X Q}=2 \overrightarrow{Q Y}$

Find the vector $\overrightarrow{Z Q}$ in terms of \mathbf{a} and \mathbf{b}.

First note that $\overrightarrow{X Q}=\frac{2}{3} \overrightarrow{X Y}$.

$$
\begin{aligned}
\overrightarrow{X Y} & =\overrightarrow{X Z}+\overrightarrow{Z Y} \\
& =\overrightarrow{X Z}+(-\overrightarrow{Y Z})=(6 \mathbf{b})+(2 \mathbf{a}-3 \mathbf{b})=2 \mathbf{a}+3 \mathbf{b}
\end{aligned}
$$

So $\overrightarrow{X Q}=\frac{2}{3}(2 \mathbf{a}+3 \mathbf{b})=\frac{4}{3} \mathbf{a}+2 \mathbf{b}$
Now, $\overrightarrow{Z Q}=\overrightarrow{Z X}+\overrightarrow{X Q}$

$$
=-\overrightarrow{X Z}+\overrightarrow{X Q}=(-6 \mathbf{b})+\left(\frac{4}{3} \mathbf{a}+2 \mathbf{b}\right)=\frac{4}{3} \mathbf{a}-4 \mathbf{b}
$$

Question 2

n is a positive integer.
Show that $7 n^{2}+29-(n-1)^{2}$ is always even.

Expanding and simplifying, we get $6 n^{2}+2 n+28$
We can write this as $2\left(3 n^{2}+n+14\right)$
This is always even.

