Target 7 Sheet 05B

Question 1

Express $\sqrt{3} + \sqrt{12} + \sqrt{75}$ in the form $k\sqrt{3}$, where k is an integer.

Question 2

Find the nth term of this quadratic sequence:

$$-5, -2, 5, 16, 31, \dots$$

Target 7 Sheet 05B

Question 1

Express $\sqrt{3} + \sqrt{12} + \sqrt{75}$ in the form $k\sqrt{3}$, where k is an integer.

$$\sqrt{3} + \sqrt{12} + \sqrt{75}$$
$$= \sqrt{3} + 2\sqrt{3} + 5\sqrt{3}$$
$$= 8\sqrt{3}$$

Question 2

Find the nth term of this quadratic sequence:

$$-5, -2, 5, 16, 31, \dots$$

The first differences are: 3, 7, 11, 15

The second differences are: 4, which means the sequence

has nth term $2n^2 + bn + c$

So
$$2n^2 + bn + c$$
: -5 , -2 , 5 , 16 , 31 , ...

And
$$2n^2$$

$$: 2, 8, 18, 32, 50, \dots$$

i.e.
$$bn + c: -7, -10, -13, -16, -19, ...$$

so
$$b = -3$$
 and $c = -4$

So the *n*th term of the quadratic sequence is $2n^2 - 3n - 4$