Target 7 Sheet 05C

Question 1

Express $\sqrt{63} + \sqrt{7} + \sqrt{175}$ in the form $k\sqrt{7}$, where k is an integer.

Question 2

Find the $n{
m th}$ term of this quadratic sequence:

$$-9,\ -21,\ -37,\ -57,\ -81, \dots$$

Target 7 Sheet 05C

Question 1

Express $\sqrt{63} + \sqrt{7} + \sqrt{175}$ in the form $k\sqrt{7}$, where k is an integer.

$$\sqrt{63} + \sqrt{7} + \sqrt{175}$$
$$= 3\sqrt{7} + \sqrt{7} + 5\sqrt{7}$$
$$= 9\sqrt{7}$$

Question 2

Find the nth term of this quadratic sequence:

$$-9, \ -21, \ -37, \ -57, \ -81, \dots$$

The first differences are: -12, -16, -20, -24

The second differences are: -4, which means the sequence

has nth term $-2n^2 + bn + c$

So
$$-2n^2 + bn + c$$
: -9 , -21 , -37 , -57 , -81 ,...
And $-2n^2$: -2 , -8 , -18 , -32 , -50 ,...

i.e.
$$bn + c: -7, -13, -19, -25, -31, ...$$

so
$$b = -6$$
 and $c = -1$

So the nth term of the quadratic sequence is $-2n^2 - 6n - 1$