Target 8 Sheet 03B

Question 1

You have seven cards, numbered as shown:

You pick two of the cards at random and multiply their numbers.

What is the probability that this product is an **odd** number?

Question 2

Find the exact coordinates of the two points of intersection of the line y = 3x and the circle $x^2 + y^2 = 120$.

Target 8 Sheet 03B

Question 1

You have seven cards, numbered as shown:

You pick two of the cards at random and multiply their numbers.

What is the probability that this product is an **odd** number?

The only way to get an odd product is to pick two odd cards. Therfore the probability of getting an odd product is

$$\frac{2}{7} \times \frac{1}{6} = \frac{2}{42} = \frac{1}{21}$$

Question 2

Find the exact coordinates of the two points of intersection of the line y = 3x and the circle $x^2 + y^2 = 120$.

Substituting y = 3x into $x^2 + y^2 = 120$, we get: $x^2 + (3x)^2 = 120$ $\implies 10x^2 = 120$ $\implies x^2 = 12$ $\implies x = \pm \sqrt{12}$ Therefore, $x = 2\sqrt{3}, x = -2\sqrt{3}$ Since y = 3x, the points of intersection are $(2\sqrt{3}, 6\sqrt{3})$ and $(-2\sqrt{3}, -6\sqrt{3})$

