Target 9 Sheet 03A

Question 1

n is an integer.

Prove algebraically that $2n^2\left(\frac{6}{n}+n\right)+6n(n^2-2)$ is always a cube number.

Question 2

Solve $\frac{x}{7} - \frac{x}{x+1} = 11$, writing your solutions correct to 3 decimal places.

Target 9 Sheet 03A

Question 1

n is an integer.

Prove algebraically that $2n^2\left(\frac{6}{n}+n\right)+6n(n^2-2)$ is always a cube number.

$$2n^2\bigg(\frac{6}{n}+n\bigg)+6n\big(n^2-2\big)$$

$$= 12n + 2n^3 + 6n^3 - 12n$$

$$=8n^{3}$$

$$=(2n)^3$$
, which is a cube number.

Question 2

Solve $\frac{x}{7} - \frac{x}{x+1} = 11$, writing your solutions correct to 3 decimal places.

Multiplying each side by 7(x+1), we get

$$x^2 - 6 \ x = 77 \ x + 77$$

Rearranging, we get $x^2 - 83 x - 77 = 0$

Solving using the quadratic formula we see

$$x = 83.918, x = -0.918$$