Question 1

n is an integer.
Prove algebraically that $3 n^{2}\left(\frac{24}{n}+n\right)+24 n\left(n^{2}-3\right)$ is always a cube number.

Question 2

Solve $\frac{x}{3}-\frac{2 x}{x+6}=10$, writing your solutions correct to 3 decimal places.

Question 1

n is an integer.
Prove algebraically that $3 n^{2}\left(\frac{24}{n}+n\right)+24 n\left(n^{2}-3\right)$ is always a cube number.

$$
\begin{aligned}
& 3 n^{2}\left(\frac{24}{n}+n\right)+24 n\left(n^{2}-3\right) \\
= & 72 n+3 n^{3}+24 n^{3}-72 n \\
= & 27 n^{3} \\
= & (3 n)^{3}, \text { which is a cube number. }
\end{aligned}
$$

Question 2

Solve $\frac{x}{3}-\frac{2 x}{x+6}=10$, writing your solutions correct to 3 decimal places.

Multiplying each side by $3(x+6)$, we get

$$
x^{2}=30 x+180
$$

Rearranging, we get $x^{2}-30 x-180=0$
Solving using the quadratic formula we see

$$
x=35.125, x=-5.125
$$

